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Abstract—Generative Adversarial Network (GAN) and its
variants serve as a perfect representation of the data generation
model, providing researchers with a large amount of high-
quality generated data. They illustrate a promising direction for
research with limited data availability,. When GAN learns the
semantic-rich data distribution from a dataset, the density of
the generated distribution tends to concentrate on the training
data. Due to the gradient parameters of the deep neural network
contain the data distribution of the training samples, they can
easily remember the training samples. When GAN is applied to
private or sensitive data, for instance, patient medical records,
as private information may be leakage. To address this issue,
we propose a Privacy-preserving Generative Adversarial Network
(PPGAN) model, in which we achieve differential privacy in
GANs by adding well-designed noise to the gradient during the
model learning procedure. Besides, we introduced the Moments
Accountant strategy in the PPGAN training process to improve
the stability and compatibility of the model by controlling privacy
loss. We also give a mathematical proof of the differential privacy
discriminator. Through extensive case studies of the benchmark
datasets, we demonstrate that PPGAN can generate high-quality
synthetic data while retaining the required data available under
a reasonable privacy budget.

Index Terms—Privacy leakage, GAN, deep learning, differen-
tial privacy, moments accountant.

I. INTRODUCTION

In recent years, researchers have used a large number of
training data to perform data mining tasks, in the field of
medical and health informatics, such as disease prediction and
auxiliary diagnosis. Deep learning models are employed to
remember the characteristics of a large number of training
samples for classification or prediction purposes. However,
organizations such as hospitals and research institutes are
paying more and more attention to the protection of data
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[1]. Additionally, the General Data Protection Regulation
(GDPR)|2] issued by the European Union prohibits organi-
zations from sharing private data. It is increasingly difficult
for researchers to obtain training data unlimited legally.

Fortunately, the generative model provides us with a so-
lution to the issue of data scarcity [3], yet data privacy
leakage issues may arise. StyleGAN [4] shown impressive
performance in generating fake face images. In principle, it can
memorize data distribution from the small amount of training
data, rendering indistinguishable high-quality “fake” samples.
However, for most people, they expect their face data not to
be used as a training sample.

GAN can implicitly disclose the privacy information of
training samples. GAN model produces high-quality “fake”
samples through continuous training and resampling. This
training method grants hackers the opportunity to restore the
original samples. In the literature, Hitaj et al. [5] proposed
an attack model based on the distribution of training data to
reconstruct a real sample from synthesized data. This hinders
these models from learning trained sufficiently, leading to
inferior performance. Therefore, we not only need high-quality
sample generation approaches but also need to achieve a
reasonable level of data privacy.

Based on the above findings, we propose a Privacy-
preserving GAN (PPGAN). PPGAN combine with differ-
ential privacy [6] to ensure that the exact training samples
can not be revealed by adversaries from the trained model,
resulting in well-protected data privacy. In particular, we added
well-designed noise to the gradients in the training process in
PPGAN and used the framework of the WGAN [7]] model as
the main skeleton of PPGAN. The proposed model does not
suffer from privacy leakage issue whose proportional to the
volume of data thanks to the introduced average aggregator
that offsets the privacy overhead of large datasets. We evaluate
PPGAN in MNIST and Electronic Health Records (EHRSs)



datasets and demonstrate that PPGAN can generate high-
quality synthesized data while providing adequate protection
via differential privacy with a reasonable budget of privacy.

We would like to point out our main contributions as
follows:

e We propose a new Privacy-preserving GAN (PPGAN)
model that can generate high-quality data points while
protecting data privacy. PPGAN combines noise well-
designed in the differential privacy with training gradients
to disturb the distribution of the original data. Finally,
we give a rigorous proof of the differential privacy
discriminator in mathematics.

e We introduced the Moments Accountant strategy that
maintains the boundedness of the function, controls the
privacy level and significantly improves the stability of
the model training.

e We evaluated PPGAN with benchmark datasets. The
results show that PPGAN can generate high-quality data
with adequately protected privacy under a reasonable
privacy budget.

The overall structure of this paper is as follows. First, we
briefly summarize the relevant literature in Section [[I|and then
introduce the proposed PPGAN framework and its theoretical
proof in Section We assess the performance of our frame-
work in Section Finally, this paper is concluded in Section
Vi

II. RELATED WORK

In this section, we focus on the literature on privacy-
preserving deep learning. Existing literature can be roughly
classified along several axes: generative adversarial networks
in the medical field, differential privacy, and deep learning
with differential privacy.

Generative Adversarial Network. In recent years, GAN
and its variants have made meaningful progress in the academ-
ic and medical fields. Choi et al. [8] proposed medGAN, which
is a generative adversarial network for generating multi-label
discrete patient records. Arnab Kumar Mondal et al.[9]] solved
the problem of segmenting 3D multimodal medical images
with a few examples of maker are available for training. A
new method based on the generative adversarial network was
proposed to train a segmentation model with both labeled
and unlabeled images [[10]. The presented method prevented
overfitting by learning to distinguish between true and false
patches obtained by the generator network. Qi et al. [L1]
presented the Lipschitz regularization theory and algorithms
for a novel Loss-Sensitive Generative Adversarial Network
(LS-GAN). This model trains the loss function by identifying
the real and “false” samples of the marginal region, using
the idea of game theory to cause the generator to generate
the most realistic samples. LS-GAN performs very well in
medical image classification tasks. Brett K. Beaulieu-Jones
et al. [12] proposed AC-GAN (under differential privacy and
labeled private) to simulate participants in the SPRINT clinical
trial. However, the previously described GANs do not meet

the data management requirements of GDPR for privacy data
protection.

Differential Privacy. Differential privacy (DP), local differ-
ential privacy (LDP), and other related algorithms combined
with deep neural networks have become one of the most
popular algorithmic models in the field of privacy protection.
Dwork et al. [3], the author of the concept of differential
privacy, laid a lot of theoretical foundations for the field of
differential privacy. Song et al. [13]] added perturbations to
random descent gradients, which can improve network perfor-
mance after batch training. Many machine learning algorithms
can achieve differential private by introducing randomization
in the calculation, usually by noise [[13]]. Kamalika Chaudhuri
et al. [[14] proposed a basic framework for differential privacy,
a key mechanism for ensuring privacy, and how to find a
private differential approximation of several contemporary
machine learning tools.

Privacy-Preserving Deep Learning. Recently, the applica-
tion of differential privacy in deep learning has been studied
in several papers: Abadi et al. [[15)] designed a deep learning
model based on the differential privacy framework to perform
a detailed analysis of privacy costs in the model. Reza Shokri
et al. [[16] designed a privacy-preserving deep learning system
that does not require the sharing of input datasets and can
perform accurate in-depth neural network predictions under
secure multi-party computing. Nicolas Papernot et al. [[17] pro-
posed that Private Aggregation of Teacher Ensembles (PATE)
provide strong privacy protection for training data. The method
combines multiple models trained using disjoint datasets in a
black-box manner, such as records from different subsets of
users.

We propose PPGAN to address the challenges that appeared
in the previous works. In [16], although the privacy-preserving
deep learning system does not need to share datasets, it still re-
veals the user’s privacy when uploading local parameters to the
server. What is different from [[16] is that we add well-designed
noise during the process of stochastic gradient descent. In [[15],
the privacy overhead of the deep learning model based on
the differential privacy framework is directly proportional to
the number of datasets, which will significantly reduce the
accuracy of the model. We solve this problem by training the
differential privacy generator through the differentially private
discriminator model (DPDM) and can generate differential
privacy high-quality data points. We introduced a moments
accountant strategy, which not only successfully incorporated
the privacy enhancement mechanism into the training depth
generation model but also significantly improved the stability
and scalability of the generation model training itself.

IIT. METHODOLOGY

In this section, we elaborate on the proposed privacy pro-
tection framework PPGAN. We first introduce the concept
of differential privacy. Subsequently, a brief introduction to
GAN and WGAN. After that, we show the proposed PPGAN
with theoretical analyses and the way noise is added to the
gradients. Finally, we introduce moments accountant [15],



which is the fundamental idea in our framework to ensure the
privacy of the iterative gradient descent process. We strictly
prove in mathematics that the use of the moments accountant
allows the discriminator to guarantee differential privacy.

A. Differential Privacy

Differential privacy (DP) [5], [6], [15] constitutes a solid
standard for privacy guarantee for algorithms on the database.
For all two datasets = and y, which differ by at most one
record, we refer to these two datasets as an neighboring
datasets. In the above description, natural measure of the
distance between two databases x and y will be their distance:

Definition 1: (Distance Between Databases)
The ¢; norm of a database x is denoted ||x||; and is defined

to be:
[

llzll = |l 0]
i=1
The ¢; distance between two databases = and y is ||z —y||;. In
particular, when ||z — y||; = 1, « and y are mutually referred
to as neighboring datasets.
Definition 2: ((¢,0)-DP)
A randomized algorithm ¢(-) with domain ®XI is (e, §)-DP
if for all O C Range(¢) and for all d,d’" € ®M (for any
neighbouring datasets) such that ||d — d'|| < 1 :

Prl¢(d) € O] < e*Prlp(d') € O] +6 2)

Noted that € stands for privacy budget, which controls the level
of privacy guarantee achieved by mechanism ¢. And when ¢ =
o0, this case is non-private. Actually, the canonical definition
of e-DP does not include the additive term ¢ in definition
which was definited as follows:

Pr(¢(d) € O] < e*Prl¢(d’) € O] 3)

Since the privacy control in equation [3|is too strict and can
not apply to deep neural networks, ¢ is added to optimize
the original definition. (e, §)-DP provides freedom to violate
strict e-differential privacy for some low probability events. (&
preferably smaller than 1/|d|.)

Among the mechanisms for achieving differential privacy,
the two most widely used are the Laplace mechanism and
the Gaussian noise mechanism (GNM) [18|]. Due to the
combined properties of the GNM, it is prevalent in many DP
protection models. In PPGAN, we use the GNM because the
moments accountant (detailed in Section provides an
improved privacy boundary analysis and is well-matched to
the combined properties of the GNM. The GNM is defined as
follows:

é(z) 2 f(z) + N(0,0%s4?) )

The sy is defined as sensitivity, which is only related to query
type f. The sensitivity is defined as follows:

Definition 3: (Sensitivity)
We given the neighboring datasets x and 2’ and given a query
[z — Q, the sensitivity of f as follows:

Af = max||f(z) = @)l (5)

Noted that it records the largest difference between query
results on datasets  and .

According to the algotithm ¢(+) in definition [2|is stochastic
and is not related to the distribution of the output data.
Moreover, the Gaussian noise mechanism adds a well-design
noise to a single gradient without affecting the entire gradient
aggregation. Therefore, we can use this attribute with GAN
so that GAN can generate high-quality data while satisfying
differential privacy.

B. GAN and WGAN

Generative adversarial network (GAN)[4], [11], [19], [20]
is a class of deep neural network architectures comprised of
two networks, pitting one against the other (thus the “adver-
sarial”). Suppose our generative model is G(z), where z is
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Fig. 1. Structure of the GAN model.

random noise and G converts this random noise into x. Take
with contradicting training adjective Electronic Health Record
(EHR) as an example. Let G be a generator synthesizing EHR,
and D is the discriminator in the generator model. For an
arbitrary input z, the output of D(x) is a real number in the
range [0,1] that determines how likely this EHR is authentic.
Let P and P represent the distribution of real ones and the
distribution of generated EHRs, respectively. The objective
function of the discriminative model is as follows:

max Eypi[log(D(z)] + Eznpgllog(l — D(x)]  (6)

The goal of a similar from distinguishing is to prevent
them from real records and the generated ones. The entire
optimization objective function is as follows:

mén max V(G, D) = ExnPyara (2 log(D(2)]
+ E.p. (2 [log(1 = D(G(2)))]

WGAN]7] uses the Wasserstein distance instead of the
Jensen-Shannon distance. Compared with the original GAN,
WGAN’s parameters are less sensitive and the training process
is smoother. It solves a minimax two-player game that finds
the balance point of each other:

IIlC%Il qunea{/}[? Ea:NPdata(a;) [fw (ZE)] - EZNPZ(Z) [fw (G(Z))] (3)

(7

Finally, we give the WGAN training algorithm as follows:



Algorithm 1 WGAN, Arjovsky et al. [7] proposed the traning
algorithm.
Require:
a = 0.00005, the learning rate of WGAN. ¢ = 0.01, the
clipping parameter. m, the mini-batch size. ncpitic = 5,
the number of iterations per generator.
Require:
Initial critic parameters and generator’s parameters wy, g,
respectively.
while 6 has not converged do
for t = O, ceoy Neritic do
{z(}m  ~ Py a mini-batch from the real sample.
{2)}m |~ p(2) a mini-batch of prior samples.
g = Vil /m S0 [Fula®) — fulgo(=))]
w4+ w+a-RMSProp(w,gw)
w + cip(w,—c,c)
end for
Repeat the line [4]
9o+ =V sy fw(ge(21)
1: 0+« 60—a-RMSProp(d,gs)
12: end while

R AN A R ol e
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C. PPGAN framework

In this section, we present the proposed Privacy-preserving
Generative Adversarial Network (PPGAN) model, which is
detailed in Algorithm [2] and illustrated in Fig. 3] Noted that
the Discriminator has access to the real data, while the
Generator only receives feedback on the real data through the
Discriminator’s output. This will be useful in PPGAN since
only the Discriminator is required to differential privacy.
The Generator’s utilizes the result from the Discriminator,
thus differential privacy [21]. (So we add noise proportional to
the training data on the gradient of the Wasserstein distance,
rather than adding noise to the final parameters.[22], [23])

Next, we introduce the differentially private discriminator
model (DPDM). As shown in Fig. 3] DPDM reduces the
sensitivity of these gradient-decreasing updates (and thus the
overall accuracy) by clipping the stochastic gradients, virtually
ensuring that the gradient will be within a bounded range.
Hence, we only need to add noise proportional to the sensi-
tivity to ensure differential privacy. (In the Algorithm [2]) We
present the steps of PPGAN in Fig. [}

D. Privacy Guarantees of PPGAN

To show that PPGAN in Algorithm 2] does satisfy the differ-
ential privacy, we prove that the parameters of the generator
guarantee the differential privacy relative to the sample train-
ing point under the condition that the discriminator parameters
satisfy the differential privacy. Therefore, the generated data
from G satisfies the differential privacy, which means that
G does not leakage the privacy of the datasets. Through
moment accountant strategy, we can control the boundary of
guw (2@, 2(D) and calculate the final privacy loss. Along with
Definition [2} intuitively, we have the definition of privacy loss
at 7:

Fake Samples < WGAN

l Noisy Back-Propagation

OUTPUT
Fake Samples

Fine Tune Training Real Samples

!

Fake Samples
+

Real Samples

!

Differentially Private
Discriminator

!

Add noise on the
gradients

Yes

OUTPUT
Generated Samples

Fig. 2. The algorithm flow framework.

Algorithm 2 Privacy-preserving Generative Adversarial Net-
work (PPGAN)
Require:
The learning rate: «. The clipping parameter: c. The
batch size: m. The number of discriminator iterations
per generator iteration: n4. Generator iteration: n,. Noise
scale: o,,. Gradient bound: C.
Ensure:
DP generator 0;
1: Initialize generator parameters and discriminator parame-
ters wo, 0y, respectively.
2: for t; =1,...,n4 do
3 for t; =1,...,n4 do
4: {z(®}m | ~ Py a mini-batch from the real data.
5
6

{2)}ym | ~ p(2) a mini-batch of prior samples.
Guw  gwmin(1, C/||gw||) + N(0,0,%c2T) (adding
noise)

Algorithm [I]s line 6.

: Algorithm [Ifs line 7.

9:  end for

10:  Repeat the line [3]

11:  Algorithm [Ifs line 12.

12: 0 0—ay- RMSProp(b,gs)

13: end for

14: return 0,

® 3
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Fig. 3. Overview of our Privacy-preserving Generative Adversarial Network (PPGAN) model.

Definition 4: (Privacy Loss)

c(t; ¢, auzx, d,d’) EY log Plé(auz,d) = 7]

9
Pl¢(aux,d’) = 7] ©)

We introduce privacy loss to measure the distribution differ-
ence between two changing data. The privacy loss random
variable is derived from the definition [2J which is used to
describe the privacy budget of ¢(d). For a given mechanism
¢, we define the v moment B, (v;aux,d,d’) as the log of
the moment generating function evaluated at the value:
Definition 5: (Log moment generating function)

By(v; auz, d, d') £ log By g[e?C @ umdd)] (10)
Definition 6: (Moments Accountant)
Bys(v) 2 max By (v; auz, d, d") (11)

aux,d,d’

The basic idea behind the moments accountant is to accumu-
late the privacy expenditure by framing the privacy loss as
a random variable and using its moment-generating functions
to understand that variables distribution better. According to
the definition of moments accountant and Post-Processing
property (First presented in [15]), we know that the moments
accountant has an excellent property, that is, the sum in each
training iteration will limit the moments accountant. This
property makes the PPGAN model training more stable. The
tail bound can also be applied to privacy guarantee (In [15]).
Since the moments accountant saves a factor of +/log(ny/0),
according to Definition 2] this is a significant improvement for
the large iteration n.

The following theorem, a proof of which can be found in
3], [15], [24]], allows us to move the burden of differential
privacy to the discriminator; the differential privacy of the
generator will follow by the theorem.

Theorem 1: (Post-processing)

Let ¢ be an (e, §)-differentially private algorithm and let f :
& — & where ¢ is any arbitrary space. Then f o ¢ meets
(e, d)-differentially private.

Proof 1: Related proofs can be seen [3], [[LS], [24].

Next, we present the mathematical reasoning proof that the dis-
criminator satisfies the differential privacy. First, the moments
accountant needs to add noise to the g,,(z(¥, 2(9)) which is
limited to the boundary. Liyang Xie et al. add noise by clipping
the norm of g,,(z(?), 2(*)) in [3]. But we do not use the method
in PPGAN. We clipping the parameter w to add noise to the
Gu (2, 2)) in Algorithm

Lemma 1: According to the conditions of Algorithm [2]
we assume that the activate-function of D is bounded and
bounded anywhere: ¢(-) < o and ¢'(-) < o/, and each data
distribution point z satisfies ||z|| € [0y, 0,]. Then we have
||guw (2@, 2)|| < ¢, for some constant c,.

Proof 2: We assume that p: input layer number; w(™ (I =
1,...,p): weight matrix; A(™): the diagonal Jacobian of non-
linearities of m-th layer. Then we have:

¢/ (wi, M (zmY)) i =

C(m) _
A ‘{ 0,i #

where w;.(™) represents the ith row of w(™ and ¢(z(™~1)
represents the output of the (m — 1)-th layer. Then the back-
propagation algorithm on the fully connected network is as
follows:

12)

o) =V, 0 (zP),
P = (WD) © ¢ (),
oL = )\k(m_l)@j(m),

Owjr (m) —

13)

where L is the loss function, z(™ is the input layer m, A(™)
is the output layer m and ¢(™) is the error vector of layer m.
From EquationI3] we have:

oL

ERCH (A(m) (w(m+1))TmA(p71)(w(p))T)
W mi

x (AM=I)T (5P,

(14)

Fo we have:

r aoﬁfbo) ’
[Am) (W(mﬂ))T]ij < Cpoy
[A(m)w(m+1))TA(m+1)(w(m+2))T]ij < (Cp0</)2nm+1
15)



1
where we assume that ¢, < o And n,,41 represents

the number of nodes in the m + 1-th layer. So we have:

[H A(m) (w(m—&-l))T] < (cpo.d)p—mo Hnm+1.

Combining Lemm and Theore we have [%]ij
cpagag/z. Therefore, we have:

(16)

m—1

ng(x(i)’ Z(i)H < 2CP0<(7</2 Zk

According to [3l], the conditions for the discriminator to
guarantee differential privacy are given as follows:

/ 1
On = 2q4\/ ng IOg(g)/é‘

where ¢ is the sampling probability and n4 is the number of
iterations of the discriminator in each loop.

Lemma 2: Equation[I8] represents the relationship between
the noise level o, and the privacy level e. When we give a
fixed perturbation o, on the gradient, according to equation[I8]
we know that the larger the g, the D gets the fewer privacy
guarantee. Because the D calculates more data, the privacy that
can be allocated on each data point is limited. In addition, due
to the data provides more information, more iterations (ng)
will result in fewer privacy guarantees. The facts described
above require us to be cautious when choosing parameters
to achieve a reasonable level of privacy. Finally, we use
the following theorem as a privacy guarantee for generator
parameters:

Theorem 2: The output of generator learned in Algorithm [2]

guarantees (&, 0)-DP.
PPGAN modifies the GAN framework to keep differentially
private while relying on Theorem [I] and Lemma [2] to change
the differential private G to train the differentially private
D. The key idea is to add noise to the gradients of the
discriminator during the training process to create a differential
privacy guarantee.

NpNEg+1 = Cg (17

=1

(18)

IV. EXPERIMENTS

In this section, we will conduct a series of experiments to
investigate how the privacy budget affects the effectiveness
of PPGAN on the two benchmark datasets MNIST [25] and
MIMIC-III [26], [27]. MIMIC-III is a well-known public EHR
database that includes medical records of 46,520 intensive
care units (ICUs) over the age of 11[3]. We employ PPGAN
to generate EHRs and protected privacy information at the
same time. In the experiment, we focus on three issues: 1)
Relationship between Privacy budget and Generation Perfor-
mance; 2) Relationship between Privacy budget and High-
quality Datasets; 3) Utility Evaluation of PPGAN.

A. Data preprocessing

First, we only use the extracted ICD9 code (The ICD9 code
represents the type of disease, and the range of coding is C' €
[1,1071].[23], [28]) and use the first three digits for encoding.
We then record the patient’s admission to the disease and turn
it into a vector x. For example, patient P was diagnosed with

three diseases at admission, and the disease codes are indicated
by 9, 42, 146, respectively. (So the ICD9 code consists of 9,
42 and 146.) We use the vector x to indicate the patient’s
access record, where the vector is at position 9, the 42nd and
146th bits are set to 1, and the rest are set to 0. Then we
aggregate the patient’s longitudinal record into a single fixed-
size vector z € ZT, where |C| = 1071 for dataset. Noted that
the MIMIC-III is transformed into 0-1 codes for experiments
with binary variables.

B. Relationship between Privacy budget and Generation Per-
formance

In this section, we mainly explore the relationship between
privacy budget and generation performance. Considering the
combined properties data of Gaussian noise, we add Gaus-
sian noise in the process of stochastic gradient descent. Differ-
ent Gaussian noises can produce different levels of privacy. We
input the same set of MNIST image datasets and observe the
output generated samples. In the experiments, ag = 5.0x 1075
learning rate of discriminator; ccy = 5.0 x 1075, learning rate
of generator; moments accountant parameter C' = 1.0 x 10~2;
noise scale & = 1.0 x 1075, and the number of iterations
on discriminator ¢4 and generator t, are 5 and 5.0 x 10°,
respectively. The experimental results are shown in Fig. ]
The code is available![T]

As shown in Fig. |4 as the privacy budget increases, the
quality of the generated images is getting worse. We add well-
designed noise that disturbs the data point distribution of the
image. Since the noise is randomly added, the distribution of
disturbing data points is not fixed, thus ensuring differential
privacy. Please note that we cannot ignore the quality of the
generated image because we protect private information. We
should choose a reasonable privacy budget to generate an
applicable image. Generating quality and privacy budget is
a compromise issue.

Next, we will focus on the impact of noise on PPGAN’s loss
function during training. The results are shown in Fig. [5|In the
non-private case, we observe the training loss of the first 100
epoch in training. The result indicates that the loss of GAN is
smooth and stable, and no large fluctuations exist in this round
of training. When the loss of the PPGAN with noise starts to
fluctuate at the tail of the curve, PPGAN can still converge.
As can be inspected from Fig. [5] the convergence rate of
PPGAN is acceptable as the compromise of the introduced
privacy preservation capability.

C. Relationship between Privacy budget and High-quality
Datasets

In this section, we quantitatively evaluate the performance
of PPGAN. Specifically, we first compare generated data with
real data based on statistical characteristics. We propose a
Generate score to measure the quality of data generated by
GAN.

Uhttps://github.com/hdliuyi/PPGANs-Privacy-preserving-GANs
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Four differentae values are generated
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Fig. 5. Loss of Non-private Case (¢ = co) and Private Case (¢ # 00).

We proposed Generate score (GS(P;)) to measure the
quality of data generated by PPGAN, which can be formally
defined as follows for Pj:

Definition 7: (Generate scores):

IS( ) = ey IKLPM[2)| [ PM ()]

15(Py)—mean(IS(P,

(19)
( ) = |max(IS(Pg))—mm(IS(Pg)) |

where 1S(Py) is Inception score which is measure of the
performance of the GAN.

0.4
) I
0.0

epsilon=w

Dataset
. MNIST
— MIMIC-IIl

Generate scores
o
>

epsilon=5

epsilon=20 epsilon=10
Privacy Budget

Fig. 6. Generate scores of generative data on MNIST.

The experimental result is shown in Fig. [f] The generated
data’s (generated by PPGAN) generate score is compared to
the real data of the MNIST dataset with different privacy
budgets. The larger the score value, the better the quality
of the data generated by the generator. The figure shows the
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for four different quality pictures on MNIST dataset.(e = 0o, & = 20, = 10, = 5; § = 1.0 x 1079

distribution of the generate scores of PPGAN in the case of
€ = 20,10,5. It can be seen from the figure that the score
is very close to the real data generated by the WGAN (non-
private case, € = 00.). When € = 20, the PPGAN generate
score is only 0.14 different from the WGAN generate score,
which indicates that the PPGAN generation quality is close to
the WGAN.

To evaluate the performance of PPGAN, we compare three
solutions, namely dp-GAN [29], DPGAN [3]] and WGAN
(Non-private Case) in terms of the quality of the generated

data.

epsilon=c= epsilon=20 epsilon=10
Privacy Budget

Model
mmm PPGAN
m== DPGAN
m— dp-GAN

epsilon=5

Generate scores
o o o
b > @

o
N

Fig. 7. Generate scores of generative data on model PPGAN, DPGAN and
dp-GAN. (6 = 1.0 x 1075)

As can be seen from Fig. [7} the data quality generated by
PPGAN is better than dp-GAN and DPGAN.

D. Utility Evaluation of PPGAN

In this subsection, we focus on the classification perfor-
mance of PPGAN on the MNIST and MIMIC-III datasets
and compare them with the existing model WGAN. For fixed
e=5and § = 1.0 x 107, we add the generated data from
PPGAN and WGAN to the semi-supervised classification task
with a small amount of marker data. Then we focus on the
impact of the number of training samples on the classification
accuracy of the classifier. With 100 training sessions as a unit,
randomly select different numbers of samples for repeated
training and record the accuracy of the MNIST and MIMIC-
IIT datasets. For the MIMIC-III data set, for fair comparison,
we assign values to the initial variables of medGAN in
(Learning rate of D, learning rate of G and times per iteration:



04 =0, =5.0x107°, k = 2) and execute our PPGAN model.
(The code is available. E[)

0.95

—— WGAN
0.00 4 = PPGAN
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Fig. 8. The accuracy of classification on two benchmark datasets. (a) MNIST
(b) MIMIC-III

The experimental results are shown in Fig. [§] which show
that PPGAN can perfectly perform classification tasks under
reasonable privacy budget requirements, because PPGAN can
generate high quality data samples with reasonable privacy
level. When the privacy budget is within reasonable limits (For
example, € ~ 20 ), more than 90% of the generated data is
of high-quality and availability. This can solve the problem of
data sharing in related research.

V. CONCLUSION

In this paper, we propose the PPGAN model that preserves
the privacy of training data in a differentially private case. PP-
GAN mitigates information leakage by adding well-designed
noise to the gradient during the learning process. We con-
ducted two experiments to show that the proposed algorithm
can converge under the noise and constraints of the training
data and generate high-quality data. Also, our experimental
results verify that PPGAN does not suffer from mode collapse
or gradient disappearance during training, thus maintaining
excellent stability and scalability of model training.
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